Atlas-Based Transfer of Boundary Conditions for Biomechanical Simulation

نویسندگان

  • Rosalie Plantefève
  • Igor Peterlík
  • Hadrien Courtecuisse
  • Raffaella Trivisonne
  • Jean-Pierre Radoux
  • Stephane Cotin
چکیده

An environment composed of different types of living tissues (such as the abdominal cavity) reveals a high complexity of boundary conditions, which are the attachments (e.g. connective tissues, ligaments) connecting different anatomical structures. Together with the material properties, the boundary conditions have a significant influence on the mechanical response of the organs, however corresponding correct mechanical modeling remains a challenging task, as the connective structures are difficult to identify in certain standard imaging modalities. In this paper, we present a method for automatic modeling of boundary conditions in deformable anatomical structures, which is an important step in patient-specific biomechanical simulations. The method is based on a statistical atlas which gathers data defining the connective structures attached to the organ of interest. In order to transfer the information stored in the atlas to a specific patient, the atlas is registered to the patient data using a physics-based technique and the resulting boundary conditions are defined according to the mean position and variance available in the atlas. The method is evaluated using abdominal scans of ten patients. The results show that the atlas provides a sufficient information about the boundary conditions which can be reliably transferred to a specific patient. The boundary conditions obtained by the atlas-based transfer show a good match both with actual segmented boundary conditions and in terms of mechanical response of deformable organs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of MHD Boundary ‎Layer Stagnation Flow of Nanofluid over a ‎Stretching Sheet with Slip and Convective ‎Boundary Conditions

   An investigation is carried out on MHD stagnation point flow of water-based nanofluids in which the heat and mass transfer includes the effects of slip and convective boundary conditions. Employing the similarity variables, the governing partial differential equations including continuity, momentum, energy, and concentration have been reduced to ordinary ones and solved by using...

متن کامل

A Comparative Solution of Natural Convection in an Open Cavity using Different Boundary Conditions via Lattice Boltzmann Method

A Lattice Boltzmann method is applied to demonstrate the comparison results of simulating natural convection in an open end cavity using different hydrodynamic and thermal boundary conditions. The Prandtl number in the present simulation is 0.71, Rayleigh numbers are 104,105 and 106 and viscosities are selected 0.02 and 0.05. On-Grid bounce-back method with first-order accuracy and non-slip met...

متن کامل

Numerical Study of Natural Convection Heat Transfer in a Horizontal Wavy Absorber Solar Collector Based on the Second Law Analysis

Literature about entropy generation analysis of a wavy enclosure is scare. In this paper. a FORTRAN cod using an explicit finite-volume method was provided for estimating the entropy production due to the natural convection heat transfer in a cosine wavy absorber solar collector. The volumetric entropy generation terms both the heat transfer term and the friction term were straightly calculated...

متن کامل

Buoyancy Term Evolution in the Multi Relaxation Time Model of Lattice Boltzmann Method with Variable Thermal Conductivity Using a Modified Set of Boundary Conditions

During the last few years, a number of numerical boundary condition schemes have been used to study various aspects of the no-slip wall condition using the lattice Boltzmann method. In this paper, a modified boundary condition method is employed to simulate the no-slip wall condition in the presence of the body force term near the wall. These conditions are based on the idea of the bounce-back ...

متن کامل

Evaluation of Recirculation Time in Bubble Train Flow by Using Direct Numerical Simulation

In this research, hydrodynamics of the Bubble Train Flows (BTF) in circular capillaries has been investigated by Direct Numerical Simulation (DNS).The Volume of Fluid Based (VOF) interface tracking method and streamwise direction periodic boundary conditions has been applied. The results show that there exists an appropriate agreement between DNS and experimental correlation results. The re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention

دوره 17 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2014